a2 United States Patent

Dentamaro et al.

US009276998B2

US 9,276,998 B2
Mar. 1, 2016

(10) Patent No.:
(45) Date of Patent:

(54) TRANSFER OF FILES WITH ARRAYS OF
STRINGS IN SOAP MESSAGES
Inventors: Vicenzo Dentamaro, Rutigliano (IT);
Francesco Sardella, Rome (IT); Mario
Somma, Rome (IT)
INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)
Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 372 days.
Appl. No.: 13/617,007
Filed: Sep. 14, 2012

Prior Publication Data

US 2013/0091230 A1 Apr. 11, 2013
Foreign Application Priority Data

(735)

(73) Assignee:

Notice:

")

@1
(22)
(65)

(30)

Oct. 6, 2011
(51) Int.CL
GOGF 15/16
HO4L 29/08
GOGF 9/46
GOGF 17/22
GOGF 9/50
HO4L 12/58
HO4L 29/06
USS. CL
CPC oo HO4L 67/06 (2013.01); GOGF 9/465
(2013.01); GOGF 9/5055 (2013.01); GO6F
17/2247 (2013.01); HO4L 51/14 (2013.01);
HO4L 63/0428 (2013.01); HO4L 67/02
(2013.01)

4210 Y 11184126

(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(52)

(58) Field of Classification Search
None

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS
7,502,754 B2* 3/2009 Campbell ... G06Q 30/04
380/255

5/2009 Itoh ..o HO4L 67/2804
709/201

7,529,793 B2 *

120 125 130
]
170 [

| Arbiter Sis
{ Eidge ~ 165

135

t

P

w100
stem bus
115

Local bus >

| \
Y CD-ROM| [w/Ouf i
145 155 160
5140

7,660,902 B2* 2/2010 Graham GO6F 21/6245
709/203

7,904,710 B2* 3/2011 Rits ..c.coovveenrrenrne. GO6F 21/606
705/75

8,725,759 B2* 5/2014 Baxter GO6F 17/2247
707/769

2003/0212818 Al* 11/2003 Kleincooeoevvrenrnns HO041L 51/12
709/238

2006/0168052 Al* 7/2006 Srinivasan HO04L 12/5855
709/206

2007/0016897 Al* 1/2007 Toddc.oevvenen. GO6F 9/5055
717/143

2007/0150478 Al* 6/2007 Choceoen... HO041 29/12113
2007/0180132 Al* 82007 Purdy ..o GO6F 9/465
709/230

(Continued)
OTHER PUBLICATIONS

Heinzl, Steffen, et al. “Flex-swa: Flexible exchange of binary data
based on soap messages with attachments” Web Services, 2006.
ICWS’06. International Conference on. IEEE, 2006 .*

Primary Examiner — Ranodhi Serrao
Assistant Examiner — James Fiorillo

(74) Attorney, Agent, or Firm — Cuenot, Forsythe & Kim,
LLC

57 ABSTRACT

A method of transferring files in a data-processing network
using a current node within the network includes reading an
outbound content and outbound characteristics of an out-
bound file. An outbound message is created having outbound
strings including a first set of the outbound strings represent-
ing the outbound characteristics and a second set of the out-
bound strings representing the outbound content. The out-
bound message is sent to a receiver node within the network.
An inbound message is received from a sender node within
the network. The inbound message has inbound strings
including a first set of the inbound strings representing
inbound characteristics and a second set of the inbound
strings representing inbound content. An inbound file having
the inbound content is stored, and the inbound characteristics
are applied to the inbound file.

12 Claims, 7 Drawing Sheets

105

105

Telecommunication
infrastructure

110

US 9,276,998 B2
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

2008/0216052 Al* 9/2008 Hejlsberg GOG6F 9/4428
717/114
2009/0307493 Al* 12/2009 Smith HO4L 63/166
713/170
2010/0223462 Al* 9/2010 Do ..o HO4L 67/06
713/165

2010/0332825 Al*
2011/0067059 Al*
2011/0119378 Al*

2012/0260156 Al*

* cited by examiner

12/2010

3/2011

5/2011

10/2012

Bradley, IT HO4L 63/0823
713/158

Johnston GI0L 15/30
725/39

Hinks .oocoovoviieenne HO04L 67/02
709/224

TSA0 oeveviiiviieiee HO4L 63/20
715/234

US 9,276,998 B2

Sheet 1 of 7

Mar. 1, 2016

U.S. Patent

s01 01
a /

2Indniserjul

Toned1unuuIoda[],

OrT

SOT —_
S0l
B e e
] D)

091
N\

———— — -

¢cl N vl |/g

1depy mno,/ug

NOYI-do

l

i

!

\ Sl
e N

<
sng JB20
/I Sel

|

so1 A °%PHd

!

"— 001

~
-~

'\ SNQ WIISAS %

!

}

INOY

WVd

dn

. oo0sl su—~ ouS

191y

oLt —/

US 9,276,998 B2

Sheet 2 of 7

Mar. 1, 2016

U.S. Patent

IOAIOODY
180T I\“

US 9,276,998 B2

Sheet 3 of 7

Mar. 1, 2016

U.S. Patent

U.S. Patent Mar. 1, 2016 Sheet 4 of 7 US 9,276,998 B2

Conversion Security
module module

320w JI 325w J

Service
module

/—315

Web interface :/_ 305w

I

Web browser |

1
|
1
| I
: N— 330 !
| I
1

320c I 325¢ !
! A\ N\ |
: Conversion Security :
: module [€ > module !
: :
L oo o oo oo oo oo o oo s s omm omm omm omm mm mm mm mm mm mm mm omm omm mm -l

US 9,276,998 B2

Sheet S of 7

Mar. 1, 2016

U.S. Patent

e
I
| <t
1 —
| <
I
! /5]
I 2
iS4 g D
e) ° 5
_n < = <
@ 2 /) o
(197) i <
1) .mub
I
| o
I o
| <
I
I
I
..y __!l___________ ‘- -/ -/} “/‘f oo m o __]
! b o~
! + 5 g
| N o)
I = — 0
<t < 172}
! =) b= £
I = > — 2 Zh
| / 1) Lalb,
! S - 2| | #
E AR
5 —1 &h = 2
5] 3 S 7 — D
I o % =] M,
12 2| = S
! 3 @ < m
I J Q
1 ﬂAD v w > 1MI M
o
“ N S [WS =
S 5 =
™~
1 <t 6N ™
S
| < - <

US 9,276,998 B2

Sheet 6 of 7

Mar. 1, 2016

U.S. Patent

MaxLength
Title
Payload

442 —\
444 -
—
SOAP
Send

-

MaxLength
Title
Payload

436 —

Receiver

| Recognize

452

FIG.4B

US 9,276,998 B2

Sheet 7 of 7

Mar. 1, 2016

U.S. Patent

486

Sender

-7 7777 TReceiver
464 ;
1 Base64
466
N\
468
RN
470 —
Extract
472 —
474
BN
476
[Su
Result
484
RN

FIG.4C

US 9,276,998 B2

1
TRANSFER OF FILES WITH ARRAYS OF
STRINGS IN SOAP MESSAGES

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of European Applica-
tion Number 11184126.8, filed on Oct. 6, 2011, which is
incorporated herein by reference in its entirety.

BACKGROUND

1. Field

The present disclosure relates to data processing, and more
specifically, to a transfer of files with arrays of strings in
SOAP messages.

2. Description of the Related Art

Transfer of information is the main activity in a data-
processing network; particularly, this comprises the transfer
of files that are stored on non-volatile memories of the net-
work in a durable way (so as to remain available even after
their current use).

A typical example is in web services, wherein a collection
of services (i.e., stand-alone basic tasks) may be exploited
over the Internet through an interface being formally defined
in a public document (irrespectively of the actual implemen-
tation of the offered services)—for example, in the Web Ser-
vices Description Language (WSDL). The web services have
become the standard platform for application integration,
being the fundamental building blocks in the move to distrib-
uted computing on the Internet. For this purpose, the web
services are accessed via ubiquitous transport protocols (as
specified in their WSDL documents).

An example of transport protocol that is commonly used to
transfer information in web services is the Simple Object
Access Protocol (SOAP). The SOAP is a high-level transport
protocol based on the Extensible Markup Language (XML),
which allows the transfer of messages between heteroge-
neous nodes—independently of the bounding of the SOAP
messages to the actual transport protocols that are used to
convey them.

However, few techniques are available to transfer files via
SOAP messages. For example, US-A-2010/0223462 (the
entire disclosure of which is herein incorporated by refer-
ence) discloses a technique for exposing a file system of a
Local Area Network (LLAN) behind its firewall to a remote
device through web services. For this purpose, messages con-
forming to a file sharing protocol (such as the CIFS) are
included into SOAP messages with attachments (Swa). How-
ever, the SOAP messages with attachments are not of general
applicability. The alternative possibility of embedding the
CIFS messages into the CDATA field of the SOAP messages
is instead discarded because of its overhead.

Another known technique for transferring binary data via
SOAP messages is the Message Transmission Optimization
Mechanism (MTPM); in this case, the specification of the
SOAP messages is updated to support the transmission of the
binary data separately.

However, all the known techniques modify the standard
SOAP specification; for example, this result is achieved by
extending the core functionality of the standard SOAP speci-
fication with additional dedicated features, or by defining a
proprietary version of the SOAP specification. In any case,
this makes the available techniques not of general applicabil-
ity, thereby hindering their integration. A further problem
relating to the transfer of files via SOAP messages is their
security.

10

15

20

25

30

35

40

45

50

55

60

65

2

With reference to the transfer of simple data via SOAP
messages, some techniques have been proposed for encrypt-
ing this data. For example, US-A-2005/0081039 (the entire
disclosure of which is herein incorporated by reference) dis-
closes a technique for verifying encrypted SOAP messages.
For this purpose, a SOAP message is created by inserting data
(to be sent to a recipient) encrypted using a session key into its
body, and a signature of part of the data, the session key and
the signature encrypted using a public key of the recipient into
its header; the recipient of the SOAP message decrypts the
session key and the signature with its private key, and then
uses the session key to decrypt the signature (in order to verify
it) and the data. This allows protecting the SOAP message
against any signature forgery. However, this technique does
not ensure a very high degree of security.

With reference instead to the transfer of files via SOAP
messages, the above-mentioned document US-A-2010/
0223462 mentions the possibility of establishing secure con-
nections through a Virtual Private Network (VPN). However,
the VPN involves high resource consumption, takes time to
start up and does time-out when there is no activity (so that is
may be untenable in specific applications—for example, with
mobile devices or wireless networks).

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The invention may be better understood by combining the
description referring to drawings below, in which the same or
similar reference numbers represent the same or similar com-
ponents throughout the drawings. The drawings are included
within the description and constitute a part of the description
along with the detailed description below, and are used to
explain the preferred embodiments of the invention illustra-
tively and illustrate the principal and advantage of the
embodiments of the invention. In the drawings,

FIG. 1 shows a schematic block diagram of a data process-
ing system.

FIGS. 2A-2C show an exemplary scenario of application of
the data processing system.

FIG. 3 shows application components.

FIGS. 4A-4C show an activity diagram describing the flow
of activities.

DETAILED DESCRIPTION

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module,” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
ormore computer readable medium(s) having computer read-
able program code embodied, e.g., stored, thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the

US 9,276,998 B2

3

following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain (or
store) a program for use by or in connection with an instruc-
tion execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber, cable, RF,
etc., or any suitable combination of the foregoing. Computer
program code for carrying out operations for aspects of the
present invention may be written in any combination of one or
more programming languages, including an object oriented
programming language such as Java, Smalltalk, C++ or the
like and conventional procedural programming languages,
such as the “C” programming language or similar program-
ming languages. The program code may execute entirely on
the user’s computer, partly on the user’s computer, as a stand-
alone software package, partly on the user’s computer and
partly on a remote computer, or entirely on the remote com-
puter or server. In the latter scenario, the remote computer
may be connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide area
network (WAN), or the connection may be made to an exter-
nal computer (for example, through the Internet using an
Internet Service Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. Each block
of'the flowchart illustrations and/or block diagrams, and com-
binations of blocks in the flowchart illustrations and/or block
diagrams, can be implemented using computer program
instructions. These computer program instructions may be
provided to a processor of a general purpose computer, spe-
cial purpose computer, or other programmable data process-
ing apparatus to produce a machine, such that the instruc-
tions, which execute via the processor of the computer, other
programmable data processing apparatus, or other devices
create means for implementing the functions/acts specified in
the flowchart and/or block diagram block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-

25

40

45

50

65

4

ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

With reference in particular to FIG. 1, the system 110 has
a distributed architecture based on a network of computers
105, which communicate through a telecommunication infra-
structure 110 (for example, based on the Internet).

Each computer 105 is formed by several units that are
connected in parallel to a system bus 115 (with a structure that
is suitably scaled according to the actual function of the
computer 105 in the system 100). In detail, one or more
microprocessors (LP) 120 control operation of the computer
105; a RAM 125 is used as a working memory by the micro-
processors 120, and a ROM 130 stores basic code for a boot-
strap of the computer 105. Several peripheral units are clus-
tered around a local bus 135 (by means of respective
interfaces). Particularly, a mass memory comprises one or
more hard disks 140 and drives 145 for reading DVD- or
CD-ROMs 150. Moreover, the computer 105 comprises
input/output units 155 (for example, a keyboard, a mouse, a
monitor, and USB ports). A network adapter 160 is used to
connect the computer 105 to the telecommunication infra-
structure 110. A bridge unit 165 interfaces the system bus 115
with the local bus 135. Each microprocessor 120 and the
bridge unit 165 may operate as master agents requesting an
access to the system bus 115 for transmitting information. An
arbiter 170 manages the granting of the access with mutual
exclusion to the system bus 115.

Starting from the FIG. 2A, a computer acting as a sender
node of the network, or simply sender (denoted with the
reference 205s) has to send a file 210s to another computer
acting as a receiver node of the network, or simply receiver
(denoted with the reference 205r).

The sender 2055 reads the content of the file 210s and its
characteristics. The sender 2055 then creates a message 215
(for example, a SOAP message) comprising a set of strings
representing the characteristics of the file 210s (for example,
name, access permissions and dates) and its content (suitably
converted if necessary); optionally, the strings representing
the content of the file 205s may also be encrypted (for
example, with a public key of the receiver 205r).

Moving to the FIG. 2B, the message 215 is sent from the
sender 2055 to the receiver 2057. As soon as the message 215
is received by the receiver 2057, as shown in the FIG. 2C, its
strings are extracted. A file 2107 is then stored onto the
receiver 2057 with its content based on the corresponding
strings of the message 215 (suitably converted if necessary);
optionally (if these strings have been encrypted), they are
decrypted before creating the file 2107 (for example, with a
private key of the receiver 2105r7). The characteristics indi-
cated in the corresponding strings ofthe message 215 are then
applied to the file (for example, to assign its name, and to set
its access permissions and dates).

The above-described solution is very simple and of general
applicability. For example, in an aspect of the disclosure the
files may be transferred in the context of web services. Each
web service consists of a repeatable task that may be per-
formed by any providers on behalf of any consumers. The
web service (and especially its interface to be invoked by the
consumers) is formally described in a corresponding WSDL
document, which is written in an XML -based specification
conforming to the Universal Description, Discovery and Inte-
gration (UDDI) standard. Particularly, the WSDL document

US 9,276,998 B2

5

defines the messages that may be transferred among the pro-
ducers and the consumers, and the binding of these messages
to transport protocols implementing them.

One of the most common transport protocols used in web
services is the SOAP. The SOAP is a high-level transport
protocol allowing the transfer of messages between hetero-
geneous nodes, with the SOAP messages that travel from an
(initial) sender to an (ultimate) receiver, possibly by passing
through a set of intermediary nodes along a corresponding
path. For each node along this path, the SOAP messages are
bound to an actual transport protocol, which provides a seri-
alized representation of the SOAP message allowing it to be
conveyed to the next node (with each node that may exploita
different transport protocol). The SOAP supports the most
common transport protocols, such as the HyperText Transfer
Protocol (HTTP).

Each SOAP message consists of an XML-based document,
which is enclosed within an envelope qualifying the content
of the SOAP message. The envelope comprises a header
(consisting of an optional element that may be used to extend
the SOAP message with additional functions targeted to any
node) and a body (consisting of a mandatory element that has
to be processed by the receiver). The body is encoded accord-
ing to predefined rules that define specific types of data that
are supported. For this purpose, the (standard) SOAP speci-
fication defines simple types for simple values without named
parts, and compound types for compound values consisting of
aggregates of simple values (distinguishable according to
their roles). Particularly, the SOAP specification defines
strings (i.e., sequences of characters), and arrays of strings
(i.e., aggregates of strings distinguishable according to their
ordinal positions within the arrays).

In certain aspects, each file is sent (from the sender to the
receiver) by representing it as an array of strings in the body
of a SOAP message (without any extensions in its header).
This allows using standard SOAP messages. Therefore, the
transfer of the files is completely independent of the version
and extension of the SOAP messages (thereby avoiding any
incompatibility problem among the nodes of its path). All of
the above fosters the integration of heterogeneous applica-
tions, especially in the Internet.

More specifically, the array of strings is (logically) divided
into a title portion and a payload portion. The title portion
represents the characteristics of the file (in addition to other
service information). The payload portion instead represents
the content of the file.

In certain aspects, the content of the file is converted from
its binary format into a text format (i.e., encoded with print-
able characters)—for example, a Base64 format. In this case,
in each group of 3 bytes (24 bits) of the binary format, each
block of 6 bits (whose value ranges from 0 to 63) is converted
into an ASCII character (1 byte)—so as to obtain 4 ASCII

6

characters defining a 64Base character. The ASCII characters
comprise the case-sensitive characters A-Z and a-z, the num-
bers 0-9, the plus sign (+) and the slash sign (/); when the last
group contains 1 byte only, 4 bits at the 0 value are added to
obtain 12 bits that are converted into a 64Base character
formed by 2 ASCII characters plus two padding characters
“=="] whereas when the last group contains 2 bytes only, 2
bits at the O value are added to obtain 18 bits that are converted
into a 64Base character formed by 3 ASCII characters plus a
padding character “=". In this way, it is possible to reduce any
risk of corruption of the content of the file during the transfer
of the SOAP message along its path (for example, due to
incorrect formatting of some special characters).

For example, the title portion used to transfer files in nor-
mal (i.e., not encrypted) form consists of the first 10 strings of
the array of strings, whose meaning is defined as follows
according to their position within the array of string (starting
from 0):

string 0: keyword “File”, indicating the start of the title
portion of the array of string for a normal file,

string 1: name (with extension) of the file,

string 2: size of the file in bytes,

string 3: identifier representing an access permission of the
file—for example, defined in Unix-style with the number 0
(nothing), 1 (execute only), 2 (write only), 3 (write and
execute), 4 (read only), 5 (read and execute), 6 (read and
write) or 7 (read, write and execute),

string 4: time stamp—for example, in the Coordinated
Universal Time (UTC) format—representing a last write
access to the file,

string 5: hash value—for example, based on the MD5
message digest algorithm—of the file,

string 6: identifier representing a nature of the file—for
example, the content-type of the Multipurpose Internet Mail
Extensions (MIME) specification (i.e., “application”,
“audio”, “image”, “message”, “multipart”, “text”, “video” or
“x-token”, followed by its sub-type separated by the symbol
“I7)

string 7: position in the array of strings of the first string of
the payload portion (i.e., position of the string 0+10 in the
example at issue),

string 8: position in the array of strings of the last string of
the payload portion (depending on the content of the file and
on its representation), and

string 9: keyword “/File”, indicating the end of the title
portion.

For example, a generic file called “Stub.jar”, consisting of
6918 bytes, accessible in read and write (6), whose last write
access was at 5:07:20 PM of 22 Mar. 2011, whose MD5 hash
value is “c799554¢83d93aab079f2bd9bcOcbe60”, whose
MIME content-type is “application/unknown”, and whose
content is stored in a single Base64 string may be represented
with the following array of strings:

<ArrayOfString >
<string>File</string>
<string>Stub.jar</string>
<string>6918</string>
<string>6</string>

<string>3/22/2011 5:07:20 PM</string>
<string>c799554¢83d93aab079f2bd9bc0cbe60</string™>
<string>application/unknown</string>

<string>10</string>

<string>10</string>

<string>/File</string>
<string>

UEsDBBQACAAIAKWYdj4AAAAAAAAAAAAAAAAUAAQATUVUQSTITKYVIUFOSUZFU1Qu
TUb+ygAA803MyOxLLS7RDUstKs7Mz7NSMNQz4OXi5QIAUEsHCLI/AudbAAAAGQAAAFBLA

US 9,276,998 B2

-continued

WQUAAGACAAJIXY+AAAAAAAAAAAAAAAAKQAAAHBzZGkvY29tbWouL014QnIpZGdIL014Q
nIpZGdlTG9jYXRvci5qYXZh3Vhdb9s2 FHOPkP9w4Sc58+gkal vBQTBk+cAyJENWp+hjwUi0zFW
INJJKHBT977ukRVmmRDsOsj 1IMD44TUud+nnPJjABOIvIg AG4AXv0qepOymiKkuJPmLPIKZYBfv
51zBjGeMnggCWunix5QIIglmCexkkePn6cWN3frw DHrO4KyksfimxwBePyDv8XcLx8QiODwW/Q
HTAY{L+/eTdz3B3cT+07x7/jvaA5VxrlolBGu/v7e8hyleaMihVwklc5HkhiPPOxG6oH|jIleQ5xRpfwYg
COOE4mCQqaEWocIRYdInHEmNIky+chjBjwvM5bjX1SvneYLIDMWx17C4DN7AAc1Q6u3TFP1
1JoYAT/aTc/BaGggzfp3s3HjVj+GS5FywedLMeNphYXghYDY/taAmkdVIZNRvXDSMrbBICk9yah
IyVRLLIJAUKkmGiyMwKwuyyDMiaM4UusPIn3/gV1Dmc4ill8W Tau2TZezyfLmIWWn97PjXGFjC
+H60x/BIMdAFpEwDhVIWi+e65ibjdQDTgpZ1ZII'YnNCJI5T21i80SSRDjFMYzLUuJ+NxhinI5o
XSk6Pjo5/GTQtQIS8GI17eOuDoXRV/bAKfrRVEMI1T0etHT9j3y CGkxwWousFM3iFhM1pl2K6YE
U02spDarpAdojewdWVsBTEI7eWdo/Xwtkbt7Q/0SmPBEwx+06WOZ8L2Ysv85rhF2PxGPTBotha
13T1g3RdAMk08fbwD1qiy40Cer57V_bsdiHrfLOM+elhCivsdatuC+r74i3eMSRM31tzZRDOuUsQZyVp
+uptB6ZCBvLASAjFjBet4OfOxdW SKh2r8Zabgl Nak6+Qql6yrDVn6muHuCLMp/LSr30jajl6 Agds
WvIMA4+FJEILO9xpObCNjDSCXQELILES/L1jIvgVUZ+evghBRZVIXcyXMPuybgCnnBlmu340k
bsl6SFRtePbPAdwhbPD6GIKHSKkAtMvKDEfayI4Zs2 Ar1xwP7JAlzdvXM1ubRprneDQSxVKMZw
HkSmVcFNBpNOSzibmyMuS5qsMw5+¢jyAgU+XXZAdG5HYe21S+K 1s/02z¢5nEG1tX2KHMuHqT
CmeCvqQsSs8HkZB17z099G/y6mVa2U+5t6 HdBup 59 AvItCXDvSmnyS3012uzDmjziwEGeDiRzPQs
dnOPUx0SNOO/ARjADxDsBjgteIBv8DA/BzAINjUBFNT57h7Xvw/cjx8917rbhzBm+uATXON760T
kn3naNB8f791NJ6LsmoYhvx29k3FzRUlu6Nop Y 1mvFw/vBL2d0UzFalhdeUmcA4JeMoyvITAEH
65nCrtkg3zRI17626piDdewg7XtMAZbIR70/hcFthBNvO8+sq4QFE7ILIcjsYradYg+4Zr31pqTTPyG
9UzaflUhOomejlual LFrv7Wpv/RyAn68x79y7XySrYxo0ZNyXaTkR+lulugiMjen0SbKsON5+RI3Z
AHVwU1roDmNaK1twO3GHIKZUqWexnnCWdG60nQeS5stvUStpKe8FFtZOHZ3wsTugxyectRevN
NyFI7f++b/VeD+CpQusEOERhbrrywAzinQhTaeAbOHThrl aRtyQzGPkb7tP3P671t5rxh4Xs8CLj/
CLx62vzgxz9QSwcleOZIpMcEAADPFAAAUEsDBBQACAAIAB2Jdj4AAAAAAAAAAAAAAAAM
AAAACHNkaS9jb21tb24vTXhCemlkZ2UvTXhCemlkZ2VTb2FwLmphdmHVIU1v2zAMhu8B8h94b
IPOyYK2GNpT1/Qy9GNoivUw7MBYtKPOlgxKzgeG/fdScryiSwKsGdZtvtgWxZ ik Y4ru93rdDvTgav
GeteppbLFKHnCGYTVa7qbaQaYLgjk6wNrbNzkZYvSKIGNbwv14dBm3 TpbgpwRnFabhthDHt8m
hvDMMhwewHAyOYW9wfHIOdHLAD]j607vaj7/CDXAMtTESVDqdzvdjqh8xZygckongS1La512zd
040Z4U0gVtxC3D1j4VAbTwZISDUEzCpUSugbSe4FtwBbn6sfRw9e CWUMXc05qZjIcZFjVBZjm
uMmUkyxLCYEkSEa7l01u6VqDfPKwyiiELNHky9qxNLv6oPgXFvTVT7YiD6MG6V4AX0zS2rDSa
nhb5mSr31DeYf+eSL+mznaxQuFilVXItz+glaalpV59HXDmz2x[alFOIVreJLCX 3+8s TozZKhxjPDas
Ladjlau57asamm1a0lgV66+ZiOHCArtfAC0aKZ TclAXOQHtdgGXkx9FmUsRfSVmf5:L.zeRBtH8X
S6Py32K5Z5GLZ8zQvD2D/vimhkx1IM5Rqo6iZVanlkEIrU7GtiPOy2 YxuYm1 BaGAeov2VIXWORX
mV903WIMcNW4RLzHg3vheGI/Tb8xakyRSEXO0wcecbbttTj/8SfYqISEbjXm2k+FAUsJ8q3dFsYb2j
OEPG8i/i08V/WvWyTbpwp/BfX3bucRUEsHCBaMB8UdAgAAWAgAAFBLAWQUAAgACAAdIX
Y+AAAAAAAAAAAAAAAAKGAAAHBzZGkvY29tbW9oulL.014QnIpZGdlL014QnIpZGdIU29hcFNO
dWIuamF2Yel cW3PiOBZ+76r+D908mR7WufSlpjrbD3RC72Y qFwZI9261UpRjC+IpXxhThGSn8t/
nHPmCsWQwITBusKuSQCydm6Tz{ZIt7b558/0VeUPO7j8z1 xnQTmgNO2J0Y/5h3VI4R97t3rqc9F
2PkrHFiTUS4T8HNKDMEtQhfRb65 Fvn+FQWvXkg4paSxtCy8c89VNw338F 3R g4O6uRgb+8DMf
Y+Hz//uO7X0nruFuTdQ9+A32E+q4QlTkoaffl g9evQMp3a0DJkDuuaYe+HwZmYughLDC68Vyb
2J7FuelEofeCBg4nIRuYIrTItMAi0/ZcGghTInH9%0Ud9+Mql WsysUPIXWAbXKL134DvBIJkj4Xrm
V2qLkBEbdTgdyo7QIMrITxLQsVLOgB2WF{T 7ueU/h5wvFnS53nyzqmPKSwilxXFgCGijfAg7INn
OHwoVQXwyxJ8EnkG2Tq2vSC5P/8LycuAHwypSKzSit5SOrDIWFGkBu4 Yur+fhqNx1fTUYnNuAt
dR18vY2B5n9GTw3IVWxaDDgGDRFEYc4rdsTRCOaDBSXxMBJIqcCe52x06aW89XyRnQnW0OYqL
aFlylQj6Sf35r3vmQH2aqhHzd&jVbdCDD/u7iajbadOdkbQ07DcTqleX095¢l4n5X SNx2Nz/NYEObu
QIvZ3/3t22gEFvoXKuWBuUMEDVsnN7VjCAfTH/M2WyqZO+5XEa/1THCgzG8wGxm3XjUEGXELS
hbjpNabshKILxHkIfgyDpl TBXmFQeYuAKXLZG6sAr3CQDPapdwGInbmjCRS5t6kYsaD7MKQIQ1j
Kq2INkuwYep+LaOUmLN7GKSi1KR95Qm9IYRzXADBXeB1xBWED1 THnf/NZutFrNY52 ASz61Ot
w1T0+6zXbjNFs5Q0mu9q6hv8fAvngAbgROB6jIiFdIvam5rULqCqk3T9DbjdTr7M7HceXc+Cv3hC
ESdb2uiXpoeZSPaYMx6uOh3liRFVIcrpOUpFdDxo6TjSZ2DRKeMmkI10qifCOova9Ys9vjyIG1/H
STt31Qc0zvXpqeuFxU/29RecW/GzipItVqArSqBF6E1DIPAVIGGuaThYE2k4eLmDxh+FWnY5DR
bkYaKNGxWoCvSoAXnDSQNE3yqSMNcOvB2HaThG4AMBWL2wsd EStmIMFWPYnECnj4G2lias
LWRWNEYAmYhwuwr2CoOMNNWIY 3sIgr+Y 1pJswIKgVzOfAccFVEd8Tx/qx3z96tw7C2aGBAXM9
3wqcinFuajKrGGFODen0BX X Fek7QQY qhivMDIHmqwjxjNVINbrLeWCK82z73UVy3azjesQ9%e
qJduSDPq9wqAfkw/xttP&hlOjRsQtC8{qj1PcCPvFgohndzBCYZcbwejzEhPmKpB9TaDCvGyfEmjN
YegGAj7XMS5FnQ9vsUIZP9AmMP/i5j V111 Ex3CRxjcaCdoM9YOQcoYsogjz2Su2yelseQTpFyMS55Q
7qeFpKW1eTnYFRAWmevsjoZDHS5gmNP2XrTT4aamecOlebklbDHozp58waDmGMIUMDS3S2N
k3D6ZmWnhNEohMKMT2uKaEdliSP/H3YqUP5qi/gdk37+PYyTkMrCtOEILBSfMzIALXX ctz/5/sK
HO6IEI8J+U4p+ce4WXKIDTQY+M9aEKp5 TXA+fMIQPnLem AhBM13QSLVcjSIDfOdkBqWIYL
Lzfnz3ejlcsvSEemY70ik42meeC4XZb3B56pP8QI11{UKAZX1TKaAzL 7/pWIRTm7uxAPkaYbUpRT
0cL9/EWkqkhofyCDFgoS80MWEK X 10Gk4WCpwBRLVsx2kdzpoKzHo02DXYztremXHU6¢/LKB
007sMgSNPF1goqI3HihSg5ZHlecRm1BIUPO4Yl+wQzHINNvVBRvPepnLikwVtwR 7yGDS5LTc/G
359in09lteailymILOVbwIPgpOMS5 AnaHCoWLACVFIRafTZfX S8mreyzSHrXSZbwqSvSRwlamLEh
Ka0UsqLkVLXxWWO05yUlop YUHPKRktp7loM5jdInYbjMAiOVt6CZnRdn4ajslZEhXUCFol17yOSKf
Mm4x6W1IuZolsNMHvWCOCSeKSHvOIGnAyWWTFz1 vk DSBA5UhKM77F84QMvGfeWvwsZLQZH
8QDmMUFn{z7101ZQqgsyfa9IemCXdiliionw6 HPGTUbSIXuQDdBe8r+TFXHh2d0kDegYegSSAVRM
/ow/EDfoh86NguZwwOgDIpYw6SvXxLQ1k/b7LuCAyBUEN33KoqRTuzt EDmX YEAh4yCqGlIghV
ZSYbbVkYemXY17fi0Ukd28y+VWgDHIiwF2ZGD1vFtoo21ZoQBmBBQ6uBxUSHLuZdzizZ8ENqTO
AKDCIQZORbW9AYeAIBEIZG2Z2EB/BIqgoUmCS4Tj4gFMIMAYmsZG3khRiuvFpb2mGeuK1i
myk/j8hR4bmIpc6K17h/DnXzrs5qAVOIr55Re30Bm8NLO96VEg/11TqQ2YbfIyETyjHkf+VRcNb
mMQhk1heGVsidyKXplgdyDoSrIzZRWEfeUeOj6uw/dgUenUcohlR1kVaUnclOPODspTNOgOcpxmQ
Y2+1TIj6ezJEMkkCWX TMFiFp9utgnGaSN389Ft+SKyxKS02vE6XEUqGvexuzkKMqouJ2LIShIV2
g0A0No0477xyIVNqHzaP790BOkmVzXjqzTLIbZIrBvsyOtiSMM{KhAeiqhlzMQ7ZJiul5p 7HyxXG8
EaAO4ikAjQglhlEgo5xph9F IWHeW rNuW XUxUqgxJLd3wobIsk7EurTGplI82dfeyj6P1txOn6IuNP
8qJO1Fy7bFkTOPoXILK 6eaDE3g8CozxSuY26Von74QY0yf8aMtDIOnzkWjlbBlhfxTqLTYpMxI+
0SZ+0/qD98ryT9UcjsjCmaneX7c6/6vlewlutl 2nXyOX 6 HE0jjitNBcTiz2+GQzegIqt9k Wrd3xxdnna
PWk3v3ITKyMWYIGvdedERIYmFjiaPASCb/v7vaOL8063¢cd7tzG67IZ9SZRpismKBl3we9+elcvEfK
ATWG1In1ggoOhACIgmNpP 7¢cikiKaUQnR7MRA{QLSM{3OAWD6xPFvy6pr8NRngk/ERPXzT0fo
47QCOx0hVDnF1A71geBqF5aVk/ZDUPU2B6RoDeNGHK 6tWXcTBKO7qmtlg3g5piSriJxmrRwton

US 9,276,998 B2

-continued

10

qOp32NxnszN36Depfxkh8EdjJoo 5kWvIsyY YeqPgenFD8es5FO+8almU2+DyplIAx20KSeNrBtOC
qratp SINT7trwWIOGTPVUD1 ckCVaZGfHbHghSN7C7Hs6np9alaénohnuheZesH7MRBtkDOBY01
gVgGWBrAOVglYxedwVVildqzKNeZPCIMVNIX YtHpsmhyOUGHTy2 HT2xVjUSFx TxU2vQQ2ZR
wjwq YKmypsIvG+ajJONOCve9nvvEBy7mQDTZFkP/SWA9I7VQIYwdFDFXqtHb2yLfGTQlduxKs
DPBnPW4BImSQb98c¢Yy2pmnlGjXKy AxTNgm073gtg? fRrHPItIMkXn2yY/EHALt5UrSMNZLIZ
eKtx7v0qca7oxIMK6NYOdFNNsRITI47uyVDe AoirpmvPhWbw629QSwclQ5cLsX4KAADSeQAAU
EsDBBQACAAIACCIdj4AAAAAAAAAAAAAAAAIAAAACHNKaS9jb21tb24vTXhCemlkZ2UvTXh
CemlkZ2UuamF2YaWQUUvVDMBSF3wvoD/exLZrWsg2 ZT5 PS5 Thulnew5bW+7aJuEINs6xP9uUto
xhoJgXkIu55x7vsRR SHsQwbp7VKyskbzTA3IW TfrrZMQOVaxCOVAPAG3FbIOdFDZZQKJHCNIu
ueml+ArNDWEhauKuzxjsysW8FaXoDaZL MIEhm8+l0PrmHI+Um7L3ps90H2DIJjUBGXFPue79
mUD10jSFOyUoi2FZyMFRI6WT5vWAGMW 1tFCzwDAHY GeanBgX SkaxuiZEEyVAdmZZ/OHF9
BwxZzGBWVULBGQ/VID3XAnmGfCyUN5 TXTjGK8hhrNmJIJKhdlgVDrIOxLXhh/AiGXzuukIL
T/qeTxF5CnrkBpmOD/X9Qze TTk7XUFUigzQPy9dwIfviQNQSwcIK 7FjkiEBAABIAgA AUEsDBB

QACAATAHWIdj
</string>
</ArrayOfString>

As another example, the title portion used to transfer files
in encrypted form consists of the first 13 strings of the array of
strings, whose meaning is defined as follows according to
their position within the array of string (starting from 0):

string 0: keyword “EncryptedFile”, indicating the start of
the title portion of the array of string for an encrypted file,

string 1: name (with extension) of the file,

string 2: size of the file in bytes,

string 3: identifier representing the access permission of
the file as above,

string 4: time stamp representing a last write access to the
file as above,

string 5: hash value of the file as above,

string 6: identifier representing the nature of the file as
above,

string 7: identifier describing an encryption algorithm used
to encrypt the each string of the payload portion of the array
of strings—i.e., the content of the file (for example, the key-
word “RSA-1024" for the RSA encryption algorithm at 1024
bits),

string 8: public key of the receiver (for example, expressed
in Base64 format) used to encrypt the payload portion,

string 9: modulus of the encryption algorithm (for
example, expressed in Base64 format) used to encrypt the
payload portion,

string 10: position in the array of strings of the first string of
the payload portion (i.e., position of the string 0+13 in the
example at issue),

string 11: position in the array of strings of the last string of
the payload portion (depending on the content of the file, on
its representation and on its encryption), and

string 12: keyword “/EncryptedFile”, indicating the end of
the title portion.

The main application components that may be used to
implement the solution according to an aspect of the disclo-
sure are illustrated in the FIG. 3. These application compo-
nents are denoted as a whole with the reference 300. The
information (programs and data) is typically stored in the
hard-disk and loaded (at least partially) into the working
memory of each computer when the applications are running,
together with an operating system and other application pro-
grams (not shown in the figure). The applications are initially
installed onto the hard disk, for example, from DVD-ROM.

Particularly, a generic computer offering web services in
the above-described system (denoted as server 305w) exposes
aweb interface 310 for invoking them. The web interface 310
communicates with one or more service modules 315, which
actually implement the offered services. In the solution
according to an aspect of the disclosure, the service modules

25

30

40

45

55

315 access a conversion module 320w, which converts files
into SOAP messages and vice-versa. For this purpose, the
conversion module 320w may also exploit a security module
325w, which is used to encrypt/decrypt the content of the
files.

On the other hand, a generic computer exploiting the web
services offered by the server 305w (denoted as client 305¢)
comprises a web browser 330 for accessing the web interface
310. In the solution according to an aspect of the disclosure,
the web browser 330 accesses a further conversion module
320c¢ (to convert files into SOAP messages and vice-versa),
which may also exploit a further security module 325¢ (to
encrypt/decrypt the content of the files).

An activity diagram describing the flow of activities relat-
ing to an implementation of the solution according to an
aspect of the disclosure is shown in FIGS. 4A-4C. Particu-
larly, the diagram represents an exemplary process that may
be implemented in the above-described system to send a file
from a generic sender to a generic receiver with amethod 400.

The process begins at the black start circle 402 and then
forks at the synchronization bar 404 into two branches that are
executed alternatively.

Particularly, if the receiver needs to download a file from
the sender, the process passes to decision block 406 in the
swim-lane of the receiver, wherein it branches according to
the form in which the file has to be sent (i.e., normal or
encrypted). When the file has to be sent in encrypted form, a
new pair of private key and public key for the RSA algorithm
(for example, at 1.024 bits), together with the corresponding
modulus, is generated at block 408 (and stored into the mass
memory of the receiver). The process then descends into
block 410; the same point is also reached directly from the
block 406 when the file has to be sent in normal form. In both
cases, a corresponding download request (comprising the
name of the file and possibly the public key and the modulus
of the RSA encryption algorithm to be used to encrypt it) is
created. The download request is then submitted to the sender
at block 412.

Conversely, if the sender needs to upload a file onto the
receiver, the process passes from the synchronization bar 404
to the block 414 in the swim-lane of the sender, wherein a
corresponding upload request (comprising the name of the
file and the form in which it has to be sent—i.e., normal or
encrypted) is submitted to the receiver. Passing to the swim-
lane of the receiver, the process branches at decision block
416 according to the form in which the file has to be sent. As
above, when the file has to be sent in encrypted form, a new
pair of private key and public key for the RSA algorithm,
together with the corresponding modulus, is generated at

US 9,276,998 B2

11

block 418 (and stored into the mass memory of the receiver).
The process then descends into block 420; the same point is
also reached directly from the block 416 when the file has to
be sent in normal form. In both cases, a corresponding upload
response (possibly comprising the public key and the modu-
lus of the RS A encryption algorithm to be used to encrypt the
file) is created. The upload response is then returned to the
sender at block 422.

The two branches described above joint at the further syn-
chronization bar 424 (from the block 412 or from the block
422, respectively). Returning to the swim-lane of the sender
at block 425, the name of the (outbound) file to be sent to the
receiver (and possibly the public key and the modulus to be
used to encrypt it) is extracted from the download request or
from the upload response, respectively. With reference now to
block 426, the content of the outbound file is read into an
outbound array of bytes. Continuing to block 428, the out-
bound array of bytes is converted into an outbound Base64
string.

With reference now to block 430, the sender reads the
characteristics of the outbound file (i.e., its size in bytes,
access permissions in Unix-style, time stamp in UTC format,
MDS hash value, and MIME content-type in the example at
issue). The flow of activity then branches at decision block
432 according to the form in which the outbound file has to be
sent; if the outbound file has to be sent in normal form the
blocks 434-438 are executed, whereas if the outbound file has
to be to the sent in encrypted form the blocks 440-446 are
executed (with the process that then passes to block 448 in
both cases).

Referring to block 434 (normal form), a maximum length
MaxLength of the strings in the array of strings (which will be
used to send the outbound file) is set to a value that should
ensure their correct management in most practical situations;
for example, considering that several programming lan-
guages only support strings up to 32.767 ASCII characters,
the maximum length MaxLength is set to 32.767 bytes=int
(32.767/4)+1=8.191 64Base characters.

Proceeding to block 436, the sender starts filling a working
outbound array outArray| | by inserting the information of the
title portion of the array of strings at its correct position. For
example, the operations of reading the characteristics of the
outbound file and inserting the information of the title portion
into the outbound array outArray[| may be performed
together with the following instructions:

outArray[0]="File”

outArray[1]=filename

outArray|2]=file.size

outArray[3]=getFilePermission()

outArray[4]|=file.lastWriteAccessUTC

outArray[5]=getMD5Has(fileName)
outArray[6]=getMIMEType(fileName)
outArray[7]=StartTitle+10
outArray[8]=StartTitle+10+StringNum-1
outArray[9]="“/File”,

wherein StartTitle is the position (known a priori) that the
first string of the title portion will have in the array of strings,
and StringNum=int(CharNum/MaxLength)+1, with Char-
Num equal to the number of Base64 characters in the Base64
string, is the number of strings that will taken by the payload
portion in the array of strings.

The sender at block 438 then completes the filling of the
outbound array outArray| | by inserting the information of the
payload portion at its correct position. For this purpose, a loop
is performed by extracting sub-strings in succession from the
outbound Base64 string, each one consisting of a number of
Base64 characters equal to MaxLength—i.e., the Base64

10

15

20

25

30

35

40

45

50

55

12

characters from i*MaxLength to (i+1)*MaxLength-1, with i
starting from O-up to a last sub-string consisting of the
remaining Base64 characters—i.e., the Base64 characters
from i*MaxLength to CharNum-1; each sub-string is then
inserted into the outbound array outArray [i] at the corre-
sponding position.

Referring instead to block 440 (encrypted form), the maxi-
mum length MaxILength of the strings in the array of strings is
set to a value that should allow their encryption individually;
for example, considering that in the RSA encryption algo-
rithm at most 117 bytes of data may be encrypted together, the
maximum length Max[ength is set to 117 bytes=int(117/4)+
1=29 64Base characters.

Proceeding to block 442, the sender starts filling the out-
bound array outArray| | by inserting the information of the
title portion at its correct position. For example, the opera-
tions of reading the characteristics of the outbound file and
inserting the information of the title portion into the outbound
array outArray[| may be performed together with the follow-
ing instructions:

outArray[0]="EncryptedFile”

outArray[1]=filename

outArray[2]=file.size

outArray[3]=getFilePermission()

outArray[4]|=file. lastWriteAccessUTC

outArray[5]=getMD5Has(fileName)

outArray[6|=getMIMEType(fileName)
outArray[7]=“RSA-1024”

outArray[8]=myPublicKeyout

Array[9]=myModulus

outArray[10]=StartTitle+13

outArray[11]=StartTitle+13+StringNum-1

outArray[12]="“/EncryptedFile”,

wherein myPublicKey and myModulus are the public key
of'the receiver and the modulus of the RSA algorithm (which
have been extracted from the download request or the upload
response).

The sender at block 444 then completes the filling of the
outbound array outArray| | by inserting the information of the
payload portion at its correct position (by performing the
same loop as described above).

At this point, the sender at block 446 encrypts each string
of'the payload portion in the outbound array outArray]| | (from
outArray[outArray[10]] to outArray[outArray[11]]) with the
public key myPublicKey (and the modulus myModulus).

The flow of activity then merges at block 448 (from the
block 438 or from the block 446), wherein a SOAP message
is created by inserting an array of strings, generated according
to the outbound array outArray]| |, into its body. This SOAP
message is then sent to the receiver at block 450.

Moving to the swim-lane of the receiver at block 452, the
SOAP message is recognized as comprising a file in normal
form on in encrypted form from the string 0 of its array of
strings in the body part (when itis equal to the keyword “File”
or to the keyword “EncryptedFile”, respectively). In response
thereto, the flow of activity branches at decision block 454
according to the form in which the file has been sent; if the file
has been sent in normal form the block 456 is executed,
whereas if the file has been sent in encrypted the blocks
458-462 are executed (with the process that then passes to
block 464 in both cases).

Referring to block 456 (normal form), the strings of the
payload portion are extracted from the array of strings (from
the first position StartPayload=string 7 to the last position
EndPayload=string 8), and they are inserted into a working
inbound array in Array| | at corresponding positions (from the
position O to the position EndPayload-StartPayload).

US 9,276,998 B2

13

Referring instead to block 458 (encrypted form), the
strings of the payload portion are extracted from the array of
strings (from the first position StartPayload=string 10 to the
last position EndPayload=string 11), and they are inserted
into the inbound array in Array]| | at corresponding positions
(from the position 0 to the position EndPayload-StartPay-
load). The process then passes to block 460, wherein the
public key of the sender (that has been used to encrypt the
content of the file) and the modulus of the RSA encryption
algorithm are extracted from the string 8 and the string 9,
respectively, of the array of strings; the receiver then retrieves
its private key associated with this public key (from its mass
memory). Each string of the inbound array in Array| | (from
in Array[0] to in Array[EndPayload-StartPayload]) is
decrypted at block 462 by using the encryption algorithm
(indicated in the string 7 of the array of strings) with these
private key and modulus.

The flow of activity then merges at block 464 (from the
block 456 or from the block 462), wherein an inbound Base64
string is created by concatenating the (possibly decrypted)
strings of the inbound array in Array| | in succession (from in
Array|[0] to in Array| EndPayload-StartPayload]). Passing to
block 466, the 64Base string is converted into a correspond-
ing array of bytes representing the content of the file.

With reference now to block 468, a new (inbound) file with
the name indicated in the string 1 of the array of strings is
stored into the receiver with this content. Continuing to block
470, the characteristics of the inbound file are extracted from
the title portion of the array of strings (i.e., its access permis-
sion from the string 3, its last write access from the string 4,
and its MIME content-type from the string 6 in the example at
issue). These characteristics are then applied to the inbound
file at block 472; particularly, this means setting its access
permission, its last write access and its MIME content-type to
the values so obtained.

At this point, the integrity of the inbound file is verified at
block 474. For example, this is achieved by comparing the
actual size of the inbound file with the value indicated in the
string 2 of the array of strings, and/or by calculating the MDS5
hash value of the inbound file and comparing it with the value
indicated in the string 5 of the array of strings. The flow of
activity then branches at decision block 476 according to a
result of this verification; if all the comparisons have been
successful the block 478 is executed, whereas if one or more
comparisons have failed the blocks 480-482 are executed
(with the process that then passes to block 484 in both cases).

Referring to block 478 (successful verification), a result
message is created with a corresponding return code (for
example, RC=0).

Referring instead to block 480 (failed verification), the
(corrupted) inbound file is deleted from the receiver. A result
message is then created at block 482 with a return code
indicative of the occurred error.

The flow of activity then merges at block 484 (from the
block 478 or from the block 482), wherein the result message
is returned to the sender. The process then ends at the con-
centric white/black stop circles 486 in the swim-lane of the
sender.

The above-described solution may be implemented on a
number of different protocols.

For example, this solution may be used to transfer files with
the WebSocket protocol, which defines full-duplex commu-
nications using a single Transmission Control Protocol (TCP)
connection. For this purpose, whenever a client needs to
download a file from a server, a socket connection is created
between the client and the server (with a corresponding hand-
shaking phase). In response to a download request being

10

15

20

25

30

35

40

45

50

55

60

65

14

submitted from the client, the server creates an XML file
containing the same array of strings as above representing the
file (in this case, with the content of the file that is converted
into the UTF-8 format, since it is the only one supported by
the WebSocket protocol) or a (UTF-8) long string containing
all the strings of the array of strings separated by a special
character (such as “\n”). The XML file or the long string is
sent from the server to the client, which stores the correspond-
ing file as above when the keywords “File” or “Encrypted-
File” are found in the string O of the array of strings or shows
its content into a web page as usual otherwise.

As a further example, this solution may be implemented on
web services conforming to the REpresentational State
Transfer (REST) architecture, which is based on the transfer
of representations of resources (i.e., documents capturing the
stare of any addressable concept). Indeed, the above-de-
scribed solution meets the constraints of the REST architec-
ture, since it is client/server, stateless, cacheable and with a
uniform interface (i.e., the SOAP specification). In this way,
it is possible to provide a transfer protocol that is full (i.e.,
supporting the concurrent transfer of more files) and secure
(thanks to the encryption of the files) without degrading the
performance of the REST web service architecture.

Another example of application of this solution is based on
the Remote Procedure Call (RPC) protocol, which is used to
invoke procedures in an external address space—for
example, the XML-RPC protocol wherein the remote proce-
dure calls are encoded in XML format. In this case, a receiver
invokes a remote method onto a sender for transferring a file
(passing the name of the file and possibly the public key and
the modulus to be used to encrypt it); in response thereto, the
sender returns a SOAP message containing the same array of
strings as above representing the file.

In order to satisfy local and specific requirements, a person
skilled in the art may apply to the solution described above
many logical and/or physical modifications and alterations.
More specifically, although this solution has been described
with a certain degree of particularity with reference to one or
more embodiments thereof, it should be understood that vari-
ous omissions, substitutions and changes in the form and
details as well as other embodiments are possible. Particu-
larly, different embodiments of the invention may even be
practiced without the specific details (such as the numerical
values) set forth in the preceding description to provide a
more thorough understanding thereof, conversely, well-
known features may have been omitted or simplified in order
not to obscure the description with unnecessary particulars.
Moreover, it is expressly intended that specific elements and/
or method steps described in connection with any embodi-
ment of the disclosed solution may be incorporated in any
other embodiment as a matter of general design choice.

For example, an aspect of the present disclosure provides a
method for transferring files in a data-processing network.
Similar considerations apply if the same solution is imple-
mented with an equivalent method (by using similar steps
with the same functions of more steps or portions thereof,
removing some steps being non-essential, or adding further
optional steps); moreover, the steps may be performed in a
different order, concurrently or in an interleaved way (at least
in part).

The method comprising the following steps under the con-
trol of a current node of the network. An outbound content and
outbound characteristics of an outbound file (or more) are
read. An outbound message comprising a set of (one or more)
outbound strings, representing the outbound characteristics,
and a set of (one or more) further outbound strings, represent-

US 9,276,998 B2

15

ing the outbound content, is created. The outbound message is
then sent to a receiver node of the network.

In addition or in alternative, the method comprises the
following steps (under the control of the same current node of
the network). An inbound message is received from a sender
node of the network; the inbound message comprises a set of
(one or more) inbound strings and a set of (one or more)
further inbound strings. An inbound file (or more) having an
inbound content corresponding to the further inbound strings
is stored. Inbound characteristics indicated in the inbound
strings are then applied to the inbound file.

Therefore, the above-described method may be used to
download a file (from the sender), to upload a file (onto the
receiver), or both of them—with the same solution that may
also be extended to transfer two or more files in the same
message.

Inanaspect of the present disclosure, the step of creating an
outbound message comprises inserting an outbound array of
strings comprising the outbound strings and the further out-
bound strings into the outbound message. In addition or in
alternative, the steps of storing an inbound file and applying
inbound characteristics comprise extracting the inbound
strings and the further inbound strings, respectively, from an
inbound array of strings comprised in the inbound message.

However, the strings representing the characteristics of the
file and its content may be organized in any other way (for
example, into two distinct arrays of strings, or even simply
into a single sequence of strings).

Inanaspect of the present disclosure, the step of creating an
outbound message comprises inserting one of a set of (one or
more) predefined keywords into a first outbound string of the
outbound array of strings. In addition or in alternative, the
step of receiving an inbound message comprises recognizing
the inbound message in response to one of these keywords
being comprised in a first inbound string of the inbound array
of string; the inbound strings in the inbound array of strings
are then interpreted according to the keyword comprised in
the first inbound string.

However, different types or numbers of keywords (even in
different positions within the array of string) may be used to
recognize each message being used to transfer a file—for
example, by means of a single keyword for both the normal
form and the encrypted form of the file (with the message that
always comprises the strings for the information required to
decrypt the file, which strings are empty when the file is in
normal form).

Inanaspect of the present disclosure, the step of creating an
outbound message comprises encrypting the further out-
bound strings with a public key of the receiver node. In
addition or in alternative, the step of storing an inbound file
comprises decrypting the further inbound strings with a pri-
vate key of the current node corresponding to the public key.

However, nothing prevents using any other encryption
algorithm (even based on an asymmetric key); however, a
basic implementation that only supports the transfer of nor-
mal files is not excluded.

Inanaspect of the present disclosure, the step of creating an
outbound message comprises inserting a representation of the
public key into the outbound strings. In addition or in alter-
native, the step of storing an inbound file comprises retrieving
the private key corresponding to the public key indicated in
the inbound strings.

However, it is also possible to encrypt all the files that are
sent to the receiver with a common public key that has been
published by the receiver (without any need of sending it to
the receiver in each message).

10

15

20

25

30

35

40

45

50

55

60

65

16

Inanaspect ofthe present disclosure, the step of creating an
outbound message comprises the following steps. In a sce-
nario, the public key of the receiver node is extracted from a
download request for downloading the outbound file that is
received from the receiver node; in another scenario, the
public key of the receiver node is extracted from an upload
response that is received from the receiver node (with the
upload response that is in response to an upload request for
uploading the outbound file that has been submitted by the
current node to the receiver node). In addition or in alterna-
tive, the method further comprises the following steps, before
receiving an inbound message. In a scenario, the public key
and the private key are generated, the public key is inserted
into the download request, and the download request is sub-
mitted to the sender; in another scenario, the public key and
the private key are generated in response to the upload request
(which is received from the sender node), the public key is
inserted into the upload response, and the upload response is
returned to the sender node.

However, it is also possible to avoid generating a new pair
of public/private keys for each file—for example, when the
common public key being published by the receiver is used.

In an aspect of the disclosure, the outbound message is an
outbound XML -based message; in addition or in alternative,
the inbound message is an inbound XML .-based message.

However, the possibility of encoding the strings used to
transfer the file in any other serialization format—for
example, Comma-Separated Values (CSV)—is not excluded.

In an aspect of the disclosure, the outbound message is an
outbound SOAP message; in addition or in alternative, the
inbound message is an inbound SOAP message.

However, any other transport protocol (even not XML-
based) may be used to transfer the files—for example, simply
the HTTP.

In an aspect of the disclosure, the outbound SOAP message
comprises the outbound strings and the further outbound
strings in a body thereof; in addition or in alternative, the
inbound SOAP message comprises the inbound strings and
the further inbound strings in a body thereof.

However, the possibility of adding extensions to the header
of the SOAP messages is not excluded (even if it is far less
advantageous).

In an aspect of the disclosure, the outbound characteristics
and/or the inbound characteristics comprise a file name, an
access permission indicator, at least one time stamp, and/or a
content-type indicator.

However, similar, additional and/or alternative character-
istics of the file are tenable (for example, indicating its cre-
ation time, author, and the like).

In an aspect of the disclosure, the step of creating an out-
bound message comprises converting the outbound content
into an outbound sequence in text format, and segmenting the
outbound sequence into the further outbound strings. In addi-
tion or in alternative, the further inbound strings are in text
format; in this case, the step of storing an inbound file com-
prises concatenating the further inbound strings into an
inbound sequence, and converting the inbound sequence into
a binary format.

However, any other text format may be used (for example,
the Unicode); however, the possibility of transferring the
content of the file directly in its binary format is not excluded.

Inanaspect ofthe disclosure, the method further comprises
the following steps. A verification value (or more) of the
inbound file is calculated; a correctness of the inbound file is
then verified according to a comparison between each verifi-
cation value and a corresponding one of the inbound charac-
teristics.

US 9,276,998 B2

17

However, any other action may be taken when this verifi-
cation fails (for example, by retrying the transmission of the
file); in any case, this feature is not strictly necessary and it
may be omitted in a basic implementation.

In an aspect of the disclosure, said at least one verification
value comprises a hash value of the inbound file.

However, any other type or number of characteristics of the
file may be used to verify its correctness—for example, a
Cyclic Redundancy Check (CRC) code.

Another aspect of the disclosure provides a node of a
data-processing network, which comprises means for per-
forming the steps of the above-described method.

Similar considerations apply if the node has a different
structure or comprises equivalent components, or it has other
operative characteristics. In any case, every component
thereof may be separated into more elements, or two or more
components may be combined together into a single element;
moreover, each component may be replicated to support the
execution of the corresponding operations in parallel. It is
also pointed out that (unless specified otherwise) any inter-
action between different components generally does not need
to be continuous, and it may be either direct or indirect
through one or more intermediaries. More generally, the same
solution may also be applied on a system based on a different
architecture (for example, a local, wide area, global, cellular
or satellite network), and exploiting any type of (wired and/or
wireless) connections. In any case, each node of the network
may have another structure or may comprise similar elements
(such as cache memories temporarily storing the programs or
parts thereof); moreover, it is possible to replace the corre-
sponding computer with any code execution entity, either
based on a physical machine or a virtual machine (such as a
PDA, a mobile phone, and the like), or with a combination of
multiple entities (such as a multi-tier architecture, a grid
computing infrastructure, and the like).

The flowchart and block diagrams in the figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various aspects of the present disclo-
sure. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). In some
alternative implementations, the functions noted in the block
may occur out of the order noted in the figures. For example,
two blocks shown in succession may, in fact, be executed
substantially concurrently, or the blocks may sometimes be
executed in the reverse order, depending upon the function-
ality involved. Each block of the block diagrams and/or flow-
chart illustration, and combinations of blocks in the block
diagrams and/or flowchart illustration, can be implemented
by special purpose hardware-based systems that perform the
specified functions or acts, or combinations of special pur-
pose hardware and computer instructions.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the disclosure. As used herein, the singular forms
“a,”“an,” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. The terms
“comprises” and/or “comprising,” when used in this specifi-
cation, specify the presence of stated features, integers, steps,
operations, elements, and/or components, but do not preclude
the presence or addition of one or more other features, inte-
gers, steps, operations, elements, components, and/or groups
thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the claims

10

15

20

25

30

35

40

45

50

55

60

65

18

below are intended to include any structure, material, or act
for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and
described in order to best explain the principles of the inven-
tion and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiments with various modifications as are suited to the
particular use contemplated.

What is claimed is:
1. A method of transferring files in a data-processing net-
work using a current node within the network, comprising:
reading an outbound content and outbound characteristics
of an outbound file, wherein at least one outbound char-
acteristic describes whether the file is to be sent as
encrypted or sent as non-encrypted;
applying the outbound characteristics to the outbound file;
determining a maximum length to be used to create at least
two sets of outbound strings;
creating an outbound XMI-based, SOAP message
wherein the at least two sets of outbound strings are
inserted into the message including a first set of the
outbound strings representing the outbound characteris-
tics, wherein at least one of the outbound strings indi-
cates the size of the outbound file;
and a second set of the outbound strings representing the
outbound content, wherein the outbound strings repre-
senting the outbound content are text strings, and the
outbound SOAP message comprises the first and second
sets of the outbound strings in a body thereof and with-
out any extensions in the outbound SOAP message
header;
sending the outbound message to a receiver node within the
network;
receiving an inbound XMIL-based, SOAP message from a
sender node within the network, the inbound message
comprising at least two sets of inbound strings including
a first set of the inbound strings representing inbound
characteristics and a second set of the inbound strings
representing inbound content, wherein the inbound
strings representing the inbound content are text strings,
and the inbound SOAP message comprises the first and
second sets of the inbound strings in a body thereof and
without any extensions in the outbound SOAP message
header;
extracting the inbound content from the second set of
inbound strings wherein the inbound content is con-
verted from text to binary;
storing an inbound file having the inbound content;
extracting from the first set of inbound strings the input
characteristics, which includes at least the file size of the
inbound file;
applying the inbound characteristics to the inbound file;
verifying the integrity of the inbound file by at least com-
paring the actual size of the inbound file with the file size
indicated in the inbound characteristics;
communicating the results of the verification to the sender
node.
2. The method of claim 1, wherein the creating includes
encrypting the second set of the outbound strings with a
public key of the receiver node; and

US 9,276,998 B2

19

the storing includes decrypting the second set of the
inbound strings with a private key of the current node
corresponding to the public key.

3. The method of claim 2, wherein the creating includes
inserting a representation of the public key into the outbound
strings; and

the storing includes retrieving a private key corresponding

to a public key indicated in the inbound strings.

4. The method of claim 3, wherein the creating includes
extracting the public key of the receiver node from a down-
load request for downloading the outbound file received from
the receiver node; and

further comprising, before receiving the inbound message,

generating the public key and the private key, inserting
the public key into the download request, and submitting
the download request to the sender.

5. The method of claim 3, wherein the creating includes
extracting the public key of the receiver node from an upload
response received from the receiver node, the upload
response in response to an upload request submitted by the
current node to the receiver node; and

further comprising, before receiving the inbound message,

generating the public key and the private key in response
to the upload request being received from the sender
node, inserting the public key into the upload response,
and returning the upload response to the sender node.

6. The method of claim 1, further comprising:

calculating verifications values of the inbound file; and

verifying a correctness of the inbound file based upon a

comparison between each of the verification values and
a corresponding one of the inbound characteristics.
7. The method of claim 6, wherein one of the verification
values is a hash value of the inbound file.
8. The method of claim 1, further comprising:
inserting a predefined keyword into a first outbound string
of the outbound strings; and recognizing a keyword
within a first inbound string of the inbound strings; and

interpreting the inbound strings based upon the keyword
within the first inbound string.

9. The method of claim 1, wherein both the inbound and the
outbound characteristics includes at least one of a file name,
an access permission indicator, a time stamp, and a content-
type indicator.

10. The method of claim 1, wherein the creating includes
converting the outbound content into an outbound sequence
in text format, and segmenting the outbound sequence into
the second set of the outbound strings, the storing includes
concatenating the second set of the inbound strings into an
inbound sequence, and converting the inbound sequence into
a binary format, and the second set of the inbound strings are
in text format.

11. A current node within a data-processing network, com-
prising:

at least one processor, wherein the at least one processor is

configured to perform and/or initiate:

reading an outbound content and outbound characteris-
tics of an outbound file wherein at least one outbound
characteristic describes whether the fileis to be sentas
encrypted or sent as non-encrypted;

applying the outbound characteristics to the outbound
file;

determining a maximum length to be used to create at
least two sets of outbound strings;

creating an outbound XMIL.-based, SOAP message
wherein the at least two sets of outbound strings are
inserted into the message, including a first set of the
outbound strings representing the outbound charac-

5

15

20

25

30

35

40

45

50

55

60

65

20

teristics, wherein at least one of the outbound strings
indicates the size of the outbound file;

and a second set of the outbound strings representing the
outbound content; wherein the outbound strings rep-
resenting the outbound content are text strings, and
the outbound SOAP message comprises the first and
second sets of the outbound strings in a body thereof
and without any extensions in the outbound SOAP
message header;
sending the outbound message to a receiver node within the
network;
receiving an inbound XMIL-based, SOAP message from a
sender node within the network, the inbound message
comprising at least two sets of inbound strings including
a first set of the inbound strings representing inbound
characteristics and a second set of the inbound strings
representing inbound content, wherein the inbound
strings representing the inbound content are text strings,
and the inbound SOAP message comprises the first and
second sets of the inbound strings in a body thereof and
without any extensions in the outbound SOAP message
header;
extracting the inbound content from the second set of
inbound strings wherein the inbound content is con-
verted from text to binary;

storing an inbound file having the inbound content;

extracting from the first set of inbound strings the input
characteristics, which includes at least the file size of
the inbound file;

applying the inbound characteristics to the inbound file,

verifying the integrity of the inbound file by at least
comparing the actual size of the inbound file with the
file size indicated in the inbound characteristics;

communicating the results of the verification to the
sender node.
12. A computer program product comprising:
a computer usable non-transitory storage medium having
stored therein computer usable program code for trans-
ferring files in a data-processing network using a current
node within the network, the computer usable program
code, which when executed by a computer hardware
system, causes the computer hardware system to per-
form:
reading an outbound content and outbound characteris-
tics of an outbound file, wherein at least one outbound
characteristic describes whether the file is to be sentas
encrypted or sent as non-encrypted;

applying the outbound characteristics to the outbound
file;

determining a maximum length to be used to create at
least two sets of outbound strings;

creating an outbound XMlL-based, SOAP message
wherein the at least two sets of outbound strings are
inserted into the message including a first set of the
outbound strings representing the outbound charac-
teristics, wherein at least one of the outbound strings
indicates the size of the outbound file;

and a second set of the outbound strings representing the
outbound content, wherein the outbound strings rep-
resenting the outbound content are text strings, and
the outbound SOAP message comprises the first and
second sets of the outbound strings in a body thereof
and without any extensions in the outbound SOAP
message header;

sending the outbound message to a receiver node within
the network;

US 9,276,998 B2
21

receiving an inbound XMIL.-based, SOAP message from a
sender node within the network, the inbound message
comprising at least two sets of inbound strings including
a first set of the inbound strings representing inbound
characteristics and a second set of the inbound strings 5
representing inbound content wherein the inbound
strings representing the inbound content are text strings,
and the inbound SOAP message comprises the first and
second sets of the inbound strings in a body thereof and
without any extensions in the outbound SOAP message 10
header;
extracting the inbound content from the second set of

inbound strings wherein the inbound content is con-
verted from text to binary;
storing an inbound file having the inbound content; 15
extracting from the first set of inbound strings the input
characteristics, which includes at least the file size of
the inbound file;
applying the inbound characteristics to the inbound file;
verifying the integrity of the inbound file by at least 20
comparing the actual size of the inbound file with the
file size indicated in the inbound characteristics;
communicating the results of the verification to the
sender node.
25

